List of tasks

Everyone 12/9/2015

Some milestones

- Collaboration meeting Jan. 15
- DOE Lab R&D review Feb. 2016
- DOE Lab intensity frontier review June-July 2016?
- Technical design for proto-dune. June 2016
- Collab meeting May 2016 ?
- Settle on protodune 2016

High level work break down (for work beyond current model)

- Computing model beyond current ideas to benefit from HPC and other models.
- Software structure including integration with larsoft.
- Detector optimization using new tools
- Physics case studies using new tools
- This also has to be coordinated with ongoing and mature work on LarSoft.

Detector optimization

- What are the physics requirements on electronics performance.
- What is the optimum APA dimension? This is coupled to wire angle, wire length, and any potential intentional distortion.
- Generalize the problem of wire geometry beyond wire pitch to tessellation, wire angle, and number of induction planes.
- What is the optimum angle for neutrino beam to allow maximum efficiency for golden events?
- Advanced geometries such as the accordion ?
- Optimization of electric field
- Field response calculations.

Physics case studies

- The most important physics requirement is the need to reconstruct multi-track events with >80% efficiency and measure their energy.
- This has not been demonstrated yet. There are two major geometric issues:
 - The forward-going nature of high energy beam events cause ambiguities in pattern recognition.
 - Tracks going towards the wire plane have poor resolution on the induction plane.
- Other issues are
 - What fraction of energy is in multiple protons and neutrons that emerge from vertex and how to correct it.
 - What is the effect of signal to noise on e/gamma separation
- Hi priority
 - What fraction of golden events are affected by vertical ambiguity
 - Document Various event characteristics.
- E/gamma separation for selected topologies.
- Pio detection for selected topologies.
- Muon momentum determination from scattering.
- Two particle separation for selected topologies
- Mu/Pi identification based on DeDx and end point.
- kaon and proton identification and energy measurement